Поддержать команду Зеркала
Беларусы на войне
  1. В 2020-м «непростой» иностранец хвалил Лукашенко и говорил, что «никто не украдет» его имущество в Беларуси. Реальность оказалась иной
  2. «Трясти какими-то призывами». Глава МИД очередной раз высказался о Литве — теперь вспомнил про деньги и Россию
  3. Чиновники хотят ввести изменения, которые затронут тех, кто ходит в секонд-хенды и покупает мясо, молоко, яйца, хлеб, макароны и сахар
  4. «Заставлены абсолютно все обочины». Минчане жалуются на проблемы от новой системы оплаты парковок
  5. Семейная шутка стала реальностью: уехавшей из Беларуси педиатру Майе Терекуловой силовики заблокировали счета
  6. Доллар готовится: какой курс будет в середине декабря? Прогноз по валютам
  7. Россия собирается организовать «мирные протесты» в крупных городах Украины — вот с какой целью
  8. Для беларусов хотят сделать «безвизовым» целый курортный регион
  9. Налоговики обратились к владельцам недвижимости и транспорта — есть риск попасть на «административку», если проигнорировать
  10. Многодетной маме, которая вынужденно живет в Польше, силовики заблокировали карту, куда шли алименты. Вот что говорят чиновники
  11. Власти бросились устранять дефицит кадров. Эксперт: решение на поверхности — при чем тут увольнения из-за политики, аресты и «тунеядцы»
  12. «Власти не получат от нас ни евро, пока не станут демократическими». Интервью с еврокомиссаром Мартой Кос о поддержке и будущем Беларуси
  13. «Мы сами со всем разберемся». Тихановская прокомментировала скандал вокруг мужа и его возможный отъезд в Америку
  14. Лукашенко заявил, что даже если в Украине установится мир, то «нам от этого легче не станет»
  15. Секс, насилие, унижение. Рассказываем, как на самом деле жили женщины в партизанских отрядах Беларуси во время войны
  16. «Я расстроился, что он не убежал». Поговорили с беларусом, который встретил ягуара в джунглях и стал звездой Бразилии


/

Ученые из Индийского института науки и Калифорнийского технологического института решили одну из старейших загадок биологии — почему ключевые электроны в процессе фотосинтеза двигаются только по одной стороне белково-пигментного комплекса, хотя структура выглядит симметричной, пишет ScienceDaily.

Изображение используется в качестве иллюстрации. Фото: AI / ScienceDaily
Изображение используется в качестве иллюстрации. Фото: AI / ScienceDaily

Фотосинтез — это фундаментальный процесс, с помощью которого растения, водоросли и некоторые бактерии преобразуют энергию солнечного света в химическую, выделяя при этом кислород. Он состоит из множества реакций, происходящих за считаные триллионные доли секунды. Несмотря на десятилетия исследований, ранние этапы этой цепочки оставались плохо понятными.

Исследователи сосредоточились на первом ключевом звене фотосинтеза — комплексе под названием «Фотосистема II». Он состоит из двух симметричных ветвей — D1 и D2, окруженных четырьмя молекулами хлорофилла и двумя молекулами феофитина, а также связан с переносчиками электронов — пласто-хинонами. По логике, электроны должны двигаться по обеим ветвям одинаково. Но на деле энергия всегда идет только по ветви D1. Это противоречие десятилетиями ставило ученых в тупик.

Команда исследователей использовала молекулярное моделирование, квантово-механические расчеты и теорию Маркуса — модель, описывающую передачу электронов, — чтобы понять, где возникает блокировка. Они выяснили, что D2 имеет значительно более высокий энергетический барьер — для переноса электрона от феофитина к пласто-хинону требуется вдвое больше активационной энергии, чем в D1. Это делает прохождение электрона по D2 практически невозможным.

Кроме того, оказалось, что сопротивление электронному потоку в D2 в сто раз выше, чем в D1. Важную роль играют и небольшие различия в окружении пигментов: у хлорофилла в ветви D1 уровень возбуждения ниже, что делает его более «привлекательным» для электрона.

Ученые считают, что если изменить компоненты D2 — например, заменить местами хлорофилл и феофитин, — можно снизить энергетический барьер и «разблокировать» движение электронов по обеим ветвям. Это открывает перспективы для создания искусственных систем фотосинтеза, которые смогут более эффективно преобразовывать солнечную энергию в топливо.

Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.